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ABSTRACT 

The analytical formulation of the optimum (minimum 

This formulation is based on the use of cal-  
- fuel consurnjkixm) solution for docking with an ear th  satellite 
is described. 
culus of variations and includes the equations for target 
and chaser motion, the Euler-Lagrange equations, boun- 
d a r y  conditions and corner conditions. All equations a r e  
developed in three dimensions. 
dimensional set  is described based on the use of an ideal- 
ized two-impulse transfer to establish a starting point for 
the iteration process. 

-__- - 

The solution of a two- 
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1.0 INTRODUCTION AND SUMMARY 

This study describes the use of calculus of variations for obtaining 
fuel optimum rendezvous trajectories in order  to accomplish docking be- 
tween a chaser vehicle and an  earth satellite. Docking is defined as that 
par t  of the mission which extends from chaser acquisition of the satellite 
to actual achievement of the rendezvous. 
mathematical formulation is defined. The calculus of variations model 
used is based on the problem of Lagrange and includes the equations of 
motion for target and chaser  vehicle, the Euler -Lagrange equations, boun- 
dary and corner conditions. 

The complete three dimensional 

A two dimensional model was derived on the basis of the three dimen- 
sional model and implemented on a digital computer. The initial values of 
the Lagrange multipliers were selected based upon the solution of an idea- 
l ized two-impulse transfer. These multiplier s yield satisfactory intercepts 
of the target for various selectedintercept times. 
of the multipliers, the definition of the thrust needed at intercept in order 
to match velocities and yield a truly optimum solution required a prohibi- 
tive amount of computation time. 
significant place of the switching function changed mis s  distance by approx- 
imately 200 feet. 
sensitive to intercept time. 
flown. The target vehicle is in a circular  orbit, and the eccentricity of 
the chaser  orbit is on the order of 
intercept a r e  almost negligible. 

Due to the sensitivity 

For example, an e r r o r  in the seventh 

It is also shown below that fuel consumption is v e r y  in- 
These results a r e  due to the type of trajectories 

Thus, the relative velocities at 

2.0 PROBLEM FORMULATION 

Mathematical formulation of the docking problem was accomplished 
in two parts: (1) the derivation of the equations of motion for the target 
and chaser,  and (2) the development of the Euler Lagrange equations and 
transversali ty conditions for  the variational problem (optimization). 
These analyses a r e  discussed separately below. 

2.1 EQUATIONS O F  MOTION 

The equations of motion for  the target and chaser  a r e  derived in . .  
Appendix A in te rms  of "state variables" (x, y, x, y, etc. ) for two coordinate 
references. One coordinate reference, designated as the x, y, z system, 
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is an earth-centered inertial se t  with the y axis along the local vertical 
at the initial condition point; the x axis along the horizontal of the launch 
plane at the initial point, and the z axis completing a right-handed set. 
The other coordinate reference,  is an  instantaneous set ,  centered in the 
chaser with the y axis along the longitudinal axis of the chaser ;  the x and 
z axis a r e  chosen s o  that the resulting coordinate system is parallel to 
the inertial set initially. These equations of motion a r e  based upon the 
following model: 

1. Spherical ear th  

2. Inverse gravity law 

3. The only forces acting on the chaser a r e  thrust and gravity 

4. The only force acting on the target is gravity 

5 .  Rotation effects on chaser a r e  ignored 

6. Constant fuel burning rate 

7. The center of mass  of the chaser is fixed with respect to the chaser  

8. The target i s  in a non-impacting, low altitude ear th  orbit 

9. The chaser is initially in a near-identical orbit to  that of the target. 

The equations defining the motion of the target moving in an  elliptic 
trajectory over a spherical earth a r e  written in the inertial coordinate s y s -  
tem with the six orbital elements (semi-major axis, eccentricity, etc. ) 
as parameters. 
state variable (x, &, y,), etc. ) an iterative procedure based on a Taylor 
s e r i e s  expansion is defined for  computing the state variables as a function 
of time. 

Since these equations cannot be readily solved for the 

The equations defining the motion of the chaser a r e  written with the 
constraint that the thrust vector l ies  along the chaser longitudinal axis 
only. 
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2.2 THE VARIATIONAL PROBLEM 

The Euler-Lagrange equations for the variational problem a r e  developed 
in Appendix B, using minimization of fuel consumption as the optimizing 
criteria.  
rate is bounded by maximum and minimum values; and that optimum solu- 
tions consist only of subarcs of maximum and minimum mass  flow rates. 
The switching condition is derived along with the relationship between the 
thrust  vector and the inertial  coordinates. 

The equations a r e  constrained by the condition that the mass €low 

The fourteen f i rs t  order differential equations defining the problem 
require 15 boundary conditions for  their  solution, since the intercept 
time is not defined. 
in t e rms  of state variable notation, for the desired terminal conditions 
of the docking problem. The Erdmann-Weierstrass corner conditions, 
and the Weierstrass condition for the existance of a minimal value a r e  
a l so  applied to the problem. 

These boundary condition a r e  defined in Appendix B, 

3.0 COMPUTER FEASIBILITY SOLUTION 

The feasibility of the complete three dimensional formulation, dis- 
cus sed above, was checked by simplifying the formulation, implementing 
the resulting equations on a digital computer, and computing trial solu- 
tions. 
and target coplanar) with the target in a circular orbit; the equations for 
this simplified formulation are given in Appendix C. 

The simplified formulation involves a two dimensional model (chaser 

In order to obtain the t r ia l  solutions, i t  is necessary to determine 
initial conditions for the Lagrange multipliers. 
mass  ratios,  the optimum trajectory will be close to an idealized two- 
impulse transfer,  the two impulse t ransfer  was solved to obtain initial 
estimates -for the Lagrange multipliers. 
can be used to converge the solutions from the initial estimates to the 
desired values, assuming the initial estimates a r e  sufficiently accurate 
to allow convergence. 

Since, for large thrust /  

A Runge-Kutta iterative technique 

As described in Appendix C, an  investigation was ca r r i ed  out on the 
effect of the initial conditions in the Lagrange multipliers on intercept. 
The results of this investigation indicated that the fuel consumption r e -  
quired for the two-impulse transfer was very insensitive to intercept' time; 
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conversely, very small  variations in the magnitude and direction of the 
velocity impulses have very large effects on the rendezvous point. This 
implies that the initial values of the Lagrange multipliers a r e  similarly 
sensitive in the non-impulse transfer. 
following specific case: 

This was demonstrated for the 

Target altitude = 200 n mi. 

Thrust = 30,000 lb. 

Specific impulse = 440 sec. 

Initial chaser altitude = 374.0 km 

Initial chaser velocity magnitude = 6.98 km/sec.  

Initial chaser flight path angle = -1.40 deg. 

Initial central angle between = 1 deg. 
chaser and target 

F i r s t  of all, a value of 70 = 1. 38291 (Initial thrust direction) was found 
Variations in the multiplier 70 were from the impulsive t ransfer  solution. 

studied in terms of its effect on changes in the intercept position. 
results a r e  shown in Figure 1. 
tion to yo is immediately obvious. 

These 
The extreme sensitivity of intercept posi- 

b 

On the basis of computer runs of this type, initial values of the multi- 
pliers may be chosen and used for the computation of the rendezvous t r a -  
jectories. 
in Figure 2; 
target position. 
figure. Two things should be 
noted. F i r s t  of all, for  a proper choice of the Lagrange multipliers found 
from the impulsive transfer case,  miss  distances may be made negligibly 
small. Secondly, a change in the seventh decimal place for the Lagrange 
Multiplier ro changes the mis s  distance f rom 20 to 270 feet, for  this 
particular case. Therefore, any future changes in the multipliers in order  
to obtain true rendezvous (zero relative velocity) would be exceedingly 
difficult to perform. The use of the Runga-Kutta technique to obtain a 
convergent solution would be impractical. 

These rendezvous trajectories a r e  shown in relative coordinates 
6 and 5 a r e  the position of the chaser relative to the intercept 

The initial conditions a r e  the same as for the previous 
Only the trajectory near intercept is given. 
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4.’ P CONCLUSIONS 

In the cases  where the initial positions of target and chaser  are close 
together and large thrusts are available, the two-impulse solution to the 
rendezvous trajectory provides a simpler solution than the calculus of 
variations model with negligible effect on fuel consumption. 
these cases  a r e  ones in which the boundary value problem becomes most 
difficult, since iterative procedures based on f i r s t  order approximations 
to the Lagrange multiplier initial conditions a r e  wholly inadequate unless 
the solution is essentially known to begin with. The Lagrange multiplier 
method becomes more significant as the initial orbital conditions become 
separated or the thrust levels become quite small. 

Furthermore,  

Another possible approach to the problem would be to s t a r t  with 
Equations (5-2) (Appendix C)  as the equations of motion, with f se t  equal 
to zero, and derive the Euler-Lagrange equations accordingly. The re- 
sulting boundary-value problem may not be so critical, and hence, solv- 
able by conventional methods. 
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APPENDIX A 

CHASER AND TARGET EQUATIONS OF MOTION 

1.0 INTRODUCTION 

The equations of motion for the target and chaser  are derived in this 
appendix. 
relationships between the coordinate systems. 
chaser equations, and Section 4.0  defines the target equations. Since the 
target equations cannot be readily solved for the state variables, an iterative 
procedure i s  defined in Section 5.0 for computing the state variables as a 
function of time. 

Section 2 .0  defines the coordinate reference systems and the 
Section 3.0 defines the 

2.0 REFERENCE SYSTEMS 

2.1 PLUMBLINE SYSTEM 

The plumbline system a s  shown in Figure A71 has its origin at  the 
center of the earth with the y axis parallel to the gravity gradient a t  the 
point of launch. 
field, this axis passes through the point of launch. 
to the earth fixed chaser launch azimuth a t  the launch point. 
coordinate system is now formed by properly choosing the z-axis. 
system is denoted by 

Assuming a spherical ear th  and an  inverse gravitational 
The x axis is parallel 

A right hand 
This 

X 

- 
x =  Y 

z 

2 . 2  CHASER VEHICLE SYSTEM 

The chaser vehicle system of coordinates is defined by having its or i -  
gin at the center of gravity of the chaser and the YM axis along the longitudinal 

8 



Figure A - 1  Plumbline System 
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axis of the chaser a s  shown in Figure A-2. The xM and zy axes a r e  chosen 
so that the resulting coordinate system is parallel  to the p umbline system 
at  launch. This system is denoted by 

X 
M 

- 
yM x =  M 

M 
Z 

2.3 COORDINATE TRANSFORMATION 

' A s  the chaser moves in flight the two coordinate systems a r e  related 
through pitch (xp), ro l l  (xr), and yaw (x ). 
this relationship is defined by the following transformation: 

For  the geometry of this study, Y 

I 
i 
I 
I 
I 
I 
I 
I 

where 

cosx cosx 

[AX] = sinx cosx 

P r 

P r 
T 

s inx r 

T -  
x = [AX]  x M 

-sinX cosx - cosx sinx sinx sinx sinx - cosx sinx cosx 

cosx cosx - sinx sinx sinx -cosx sinx - sinx sinx cosx 
y I  P r Y P Y  P r P Y 

Y P Y  P r  P Y P r 

r Y  r Y 
cosx sinx cosx cosx 

3.0 CHASER EQUATIONS OF MOTION 

Considering the thrust  in the x coordinate system, 
M 

0 

F =  F 

0 

Newton's second law may be written in the form 
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Y 

Figure A-2 Chaser Coordinate System 
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.. 1 T -  - . I. - 
x = -[AX] F t x g  

R m 

where 

(3-1) 

m = the mass of the chaser R 
.. - 
x = the acceleration vector due to gravity 

g .. - 
x = the total acceleration vector. 

The acceleration components of Equation 3-1 a r e  shown in Figure A-3. 
The problem formulation i s  based on the following assumptions: 

1, Spherical earth 

2. Inverse gravity law 

3. The only forces acting on the chaser a r e  thrust  and gravity 

4.- Rotation effects on the chaser a r e  ignored 

5. Constant fuel burning rate  

6. The center of mass  of the chaser is fixed with respect to the chaser.  

4 . 0  TARGET EQUATIONS OF MOTION 

Given a target vehicle moving in the ear th ' s  central  force field and a 
chaser vehicle ascending to dock with the target,  the condition for docking 
requires that a t  the terminal point, the state variables of the chaser  vehicle 
match those of the target. 
integrals of the target motion in the coordinate system chosen to describe 
the chaser  motion. 
is an earth-centered inertial set  with the y axis along the local vertical of 
the launch site, a t  time of launch; the x asix along the horizontal of the launch 
plane a t  the launch site, and the z axis completing a right-handed set. In 
this earth-centered coordinate system, the target motion is given by 

The purpose of this section i s  to develop the 

This coordinate systeml designated a s  the x-y-z system 

12 
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2 
.. goRE x = -  

2 2 312 
( X 2 + Y  + z  ) 

2 .. gORE Y 

2 2 312 
y = -  

( X 2 + Y  + Z )  

.. goREZZ 

2 2 2 312 
z = -  

(X + Y  + Z )  

where 

= the acceleration due to gravity at the ear th ' s  surface 

the mean radius of the earth. 

g 0  

RE 
= 

Define the potential function 

2 
goRE 

2 2 2 112 u =  
(X + Y  t Z )  

Now Equations (4- l ) ,  (4-2) ,  and (4 -3 )  can be written as 

au x. = - ax 
au y = -  
ay 

au 
az z = -  

(4- 1) 

(4-2) 

(4- 3) 

(4-4) 

(4-5) 

(4- 6 )  

(4- 7) 

. .  
Multiplying these equations by X, Y, and Z, respectively, and adding, yields 

.. . .. . .. . 
xx t YY t zz = u 

14 

L 



1 
I 
I 
I 
1 
8 
I 

I 
1 

The integral of this yields the well-known expression fo r  the conservation 
of energy 

2 

= c1 goRE 
1/2[ (x)2 + (;)2 + (2)2] - 2 2 1 / 2  (X + Y  + Z )  

By taking the vectorgroduct of Equations (4-5), (4-6), and (4-7) with the 
vector r = iX + jY + kZ and observing the vector identity 

+ +  + 

1; 
r x r  = 0 

three additional integrals are obtained: 

YZ - ZY = c2 

zx-xz = cg 

X Y - Y X  = c4 

(4-9) 

(4- 10) 

(4- 11) 

It can readily be shown that Equations (4-9), (4- lo) ,  and (4- 11) represent 
the other conservation law in component form, the conservation of angular 
momentum. 
that by multiplying Equations (4-9), (4-lo), and (4-11) by X, Y, and Z, 
respectively and adding, yields the equation 

To develop the remaining two integrals, it i s  observed f i r s t  

C2X+C3Y +c4z = 0 (4- 12) 

This equation states that the motion of the vehicle will be contained in a 
plane passing through the origin. It will prove convenient to  define this 
plane by the following transformations: 

y1 ! = 1  0 1 0 l ' y  ! I  I 1 
I :  

15 



The combined transformation mat r ix  becomes 

sin p sin SI 

-sin p (4-13) 

-sin n sin p cos n cos p cos n 

It is noted that when the f e r ry  i s  launched exactly into the target plane 
of motion, both angles s2 and p are  zero, otherwise the target moves in 
the x - y2 plane. 

2 
z 2  axis. Using the transformation (4-13), the components of angular 
momentum C 

Thus the total angular momentum vector is along the 

and C in Equations (4-9), (4-lo), and (4-ll), become 2’ c3’  4 
7 

I = h cos p sins2 
c2 

C 3  = h sin p (4-14) 

C4 = h cos p cos 0 

where h is the angular momentum of the target. 
J 

The target motion can be described in polar coordinates by rotating 
the x2 and y2 axes through an  angle 8 about the 2 2  axis, such that the 
transformed axis x3 is in the direction of the rpdius vector from the target. 

This transformation is given by 

(4-15) 

16 
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In the x - y2 - z 2  system, the angular momentum is given by 2 

X2P2 - Y 2 X 2  = h 

Using transformation (4- 1 5), Equation (4- 16) becomes 

(4-16) 

(4-17) 2 .  r e  = h  

From geometry r 2 . 2  8 = g 
where A is the a rea  swept out by the radius vector. 

Integration of Equation (4- 17) yields 

LA = h t t C 5  (4-18) 

The remaining integral can be found from the energy integral, Equation (4-8), 
by writing it in polar coordinates (r ,  0) 

2 
- 2  2 2 2go RE 1 

r c1 ( r )  t r ( b )  = 

Where 

1 c1 = 2c1 

Since 

- d r  
r = 8 -  de 

and from Equation (4-17) 

h 

r 
6 = T .  

Equation (4-19) can also be written 

2 3  1 4  
c1 r 

2 g o  RE t 
h2  h2 

(4-19) 

(4-20) 
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Solving this fo r  - d r  and separating variables de 

de 
h -.d ( / r )  -- 

2 2  112 

h r 

Integrating this 

-1 u 8 = cos ( /B)  t 0 
0 

where 
3 
L 

h - -  go RE -u = 
r 

h 

and 

(4-21) 

Solving Equation (4-21) for r ,  the familiar equation for a conic in polar 
coordinates with the origin at one of the foci is obtained; 

1 t 1 cos ( e  - 2 4  1 t  

go R E  

The form of this conic is determined by two .constants of motion which a r e  
generally defined as 

(semi-latus rectum) 
2 2 

P = h k o R E  

C,lh2 
1 

( eccentricity) 2 4  e =  1 t  

go R E  

18 
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The constant of integration is 
- - 
L L 

r = h  / g  R = p w h e n  
o E  

defined by 

e - e = Tl2, 
0 

where eo denotes the orientation of the semi-major axis with respect to 
the x2 axis. 

Since the case of target motion in an elliptic trajectory is of interest ,  
Equation (4-22)  can be written in the rectangular coordinates x , 

2 0 yo- 2 Y X ~ 

0 0 
t - -  - 1  

b2 
2 

a 
(4-23)  

where a and b a r e  the semi-major and semi-minor axes of the ellipse, 
respectively. 
and e ,  Equation (4-23)  becomes 

If we arbi t rar i ly  choose the two constants of motion a s  a 

2 
X 2 Y  ~ 

0 0 = I  2 2 
a (1-e ) 

- t  2 
a 

(4-24)  

To write Equation (4-24)  in the x-y-z system, it is noted that 

X = X cos 8 + Y sin 8 
0 2 0 2 0 

Y = -X sin 8 t Y COS 8 
0 2 0 2 0 

and from the transformation (4-13) 

X 2  = X cos Q - Z s i n Q  

Y 2  = X sin p s i n n  + Y cos p t Z sin p cos s2 

Then, 

X = (X cos Q - Z sin ) cos 8 
0 - 0 

+ (X  sin p s i n Q  t Y cos p t Z sin p cos Q) sin 8 
0 

Y = - (X cos Q - Z sin Q) sin 8 
0 0 

t (X  sin p s i n Q  + Y cos p + Z sin p cos n) cos 8 
0 

19 



Substituting these expressions into Equation (4-24), the trajectory becomes 

1-2 1" t (X  sin p. sin R t Y cos p. t Z sin p cos R ) sin 0 
0 

+ 2  2 
a (1-e ) 

- ( X  cos 52 - Z s inR ) sin 0 0 (4-25) 

t (X sin p. sin R t Y cos p t Z s in  p. cos 52 ) cos 8 -1 = 0 
0 l2 

This i s  the equation for elliptic motion in the x, y, z coordinates. 

To  obtain integral (4-18) in te rms  of the x-y-z coordinates, consider the 
sketch shown in Figure 4-4. 

From the geometry, 

Area A F P  = Area AFQ 
Area ellipse Area circle 

and 

- 
DA = a(1-e)-X 

0 

To compute area A F Q ,  note: 

DQ = Y a / b  
0 

1 

Y a / b  

ae t X  

A r e a F D Q =  7 Y X a / b  
0 0  

0 tan M = 
0 

Y a / b  

ae tX 
-1 0 

2 
a 

tan Area CAQ = 7 = - 2 

2 
a M  

0 
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Figure A-4 Geometry of Target Orbit 
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1 
AreaCDQ = 7 (ae  t X ) Y a / b  

0 0  

Area AFQ = Area CAQ - Area CDQ t Area FDQ 

Substituting from above - 
2 

a 2 -1 Y 0 / f l - e  - eYo ) 
2 (tan AreaAFQ = - 

a 1-e ae t X 
0 

2 

a Y 7  -1 Y 0 / I 7  eY 0 - -  

Then, 

a i =  
(tan ae t X 

0 
2 A r e a A F P  = 

After transforming coordinates, Area A F P  can be written in t e rms  of X and 
Y 

-1 1 
2 

2 2 1 -e 
tan a i 1 - e 2  

Area A F P  = 

X ( s i n p s i n n c o s 8  -cos s in8  ) t Y c o s p c o s 8  t Z ) s i n p c o s 5 2 c o s 8  
0 0 0 - 0 

t sin52 sin 8 ) 
0 

a e  t X (cos Q cos 8 t sin p sin52 s in8  ) t Y cos p s i n 8  t Z ( s i n p  cos 52sin8 
0 0 0 0 

- sin cos 8 ) 
0 - 

e 

a 1-e 
X (s in  p. sin Q cos 8 - cos R sin 8 ) t Y cos p cos 8 t Z (sin52 sin 8 2 0 0 0 0 

t sin p cos 52 cos 8 ) 
0 

e 

a 1-e 
X (s in  p. sin Q cos 8 - cos R sin 8 ) t Y cos p cos 8 t Z (sin52 sin 8 2 0 0 0 0 - -  1 

t sin p cos 52 cos 8 ) 
0 

3 Substituting this into Equation (4-18) and noting that 
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the final form of this integral becomes 

(4-26) 2 2 -1  1 
2 a 1 -e tan 

1 -e 

X(sin )I sin 0 cos 8 -cos $2 sin 8 ) -Y cos p cos 8 t Z ( s i n p  cosncos  8 
0 0 0 0 

t s i n n  sin e- )  

ae + X  (cos G? cos 8 t sin p s i n n  s in8  ) t Y  c o s p  s in8  t Z (s in  p c o s n s i n 8  
0 0 0 0 

- sinS2 cos 8 
0 

X ( s i n p  s inS2cos8 - c o s Q s i n O ) t Y c o s p  c o s 8  c 0 0 0 

e - 
2 

a 1-e 
2 

t Z (sinS2 sin 8 t sin p cos Qcos  8 ) 1-e ( t - T  ) 
0 0 P 

where T is the time of perigee crossing. 
P 

Summarizing the results; for  a target moving in an elliptic trajectory 
over a spherical earth with the trajectory defined by a, e , Q  ,P, eo, and T, 

the following equations completely define the motion of the target in the 
chaser coordinates of the ferry: 

2 

= o  (4-27) go RE 

2 a  
t 

2 2 

Y i  - z+ - RE .~ag~ f l - e Z c o s  p s i n n  = 0 (4- 28) 
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2 zx - xz + R ~ C J ~  - e sin p = o 
0 

X(cos S2 cos e + sin p sin 52 sin 8 ) + y cos p sin e 
2 0 0 0 

a 
1 2  

+ Z(sin p cos $2 sin 8 - sin S2 cos 8 
0 

(4-29) 

(4- 30) 

(4-31) 

X(s inp  sinS2cosO - c o s a s i n O  ) + Y c o s p  cos0  + 2  2 0 0 0 a ( 1 - e  ) 

+ Z(sin $2 sin 8 + sin p cos S2 cos 8 
0 

2 -1  1 
2 a 2 J l  - e tan 

J 1  - e 

- 1  = 0 

( 4- 32) 

X( sinp s i d c o s e  -cosnsine )-Ycosp case +Z(sinp cosS2cose +sinS2sine ) 
0 0 0 0 0 

ae+X(cosQcose tsinp, sinS2sine ) tycosp  sine +Z(sinp cosS2sine -sinS2cose ) 
0 0 0 0 0 

e [x(sinp sin cos e - cos sin e + Y  cos p cos e t z(s inQ s ine  
r ,  2 - 0 c 0 0 0 a q l - e  

+ s i n  p cos cos e 0 ) ]  - R E x J T 3 '  

F o r  the docking problem considered, these equations 
terminal conditions fo r  the chaser. 

( t - t )  = 0 
P 

become the set  of 

5.0 SOLUTION FOR FINAL CONDITIONS 

F o r  the target orbit, orbits with very  low eccentricities a r e  considered. 
Furthermore,  i t  is assumed that the angles 0 and p a r e  small. 
Equations (4-27) through (4-32) cannot readily be solved for the state variables 
X, +, 2 ,  X, Y, and 2, the circular orbit solution with S2 = 0, and p = 0 is 
considered as the f i r s t  approximation. 
quantities: 

Since the 

Denoting this solution by bar red  
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- - 
X = r cos (e +a) 

0 

- 
Y = F s i n  (0 +a) 

x = vcos (e +cy) 

Y = -V sin (0 + (Y) 

0 
- -s- 

0 
- -r 

0 
- 
z = o  

i = o  - 

where the parameter (Y is specified (specified docking time) and is given by 

2 k = g R  
o E  

The parameters  F and 
the mean orbital velocity, respectively. 

can be considered as the mean orbital radius and 

To obtain the exact solution, a linear iteration based on a Taylor se r ies  
expansion is considered. Given a function 

i ts  expansion about an approximate solution becomes 

- - - - e -  

F(X1, X ~ S  Xg, X4, X ~ S  x(,) 

aF 
a A x6 AX2 t ..... +- aF 

A X 1  +- +- aF 
a 

x2 x6 

t higher order t e r m s  z 0 

- - 
with the partial  derivatives evaluated at x 1, X2’ ..... X6. 
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For  n simultaneous equations, considering only first order  te rms ,  

a l l  a12 a13 a14 a15 a16 ' * * * *  a In 

a21 a22 * .  

Ax 1 

Ax2 

10 

F20 
- .... - - ....... ................ 

a a ..... 
n l  n2 

a nn n AX no F 

where the coefficients amn a r e  the partial derivatives evaluated at the ap- 
proximate solution, and Fno denotes the function Fn evaluated at the approxi- 
mate solution. 

After obtaining the first solution from Equations (5- 1) through (5-6), 
the solution would proceed by solving each iteration cycle for the changes 
AX - n 

For  the six simultaneous equations considered, the coefficients a mn 
a r e  given by: 

4 

2 k% a =  -2 -2 -2 312 
l1 [ x  t Y  + z ]  

2 k2T a =  
12 -2 -2 -2 312 [x t Y  + z ]  

2 k 2 z  a -  - 
-2 -2 -2 312 

l 3  [ x  t Y  + z ]  

= 2T 14 a 

= 2y 15 
a 

= 2 2  a16 

= o  
21 

a 

= z  22 
a 

1 
1 
1 
I 
I 
I 
1 
I 
I 



I 
i 
I 
i 
1 
I 
I 
D 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 

a = -V 
a = O  

a = - Z  

a = Y  

a = -Z 

a = O  

a = T  
a = Z  

a = O  

a 

a = T  
a = -55 

a 

a 

a = X  

= o  a 

a 

23 

24  

25 

26 

31 

32 

33 

34 

35 

36 

41 

42  

4 3  

44 

45  

46 

51 

- 
- 

- 

- = -x 

= o  

= -y - 
- 

2 2 2 = 2(X(cos sz + sin p sin 0)  +T cos p sin p sin Q 

2 - -z sin0 cos Q c o s  + (e2 t e 4 ) [ ~ ( c o s  a cos e 
0 - - - sin p sin 52 sin 8 ) - Y c o s  p sin e 

+ sin p cos  52 sin 0 I] (cos 52 cos e 

- Z(sin s1 cos e 
0 0 0 

- sin p sin sin e I} 
0 0 0 

\ 
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2 
= ~ ( Z s i n  p, sin 52 cos p, t T COS p, t Z  sin p, cos sz cos p, 

52 
a 

2 4 -  - (e t e ) [X(COS SZ cos e - sin p, sin sin e ) 
0 0 

- - 
1 
1 
1 

- Y cos p, sin e - Z(sinn cos e + s inp  cosn  sin 0 13 cos p, s ine  } 
2 2 2 2 

t e )[X(COS fi cos 8 

0 0 0 0 

a = 2(-Xcos p, s i n n c o s a t Y c o s p ,  sinp, c o s n t T ( s i n  n t s i n  p, cos SZ) 

- sin p, sin 52 sin e ) - Y cos p, sin 8 

53 
2 4 -  - 

- (e 

- Z(s inacos0  t s inp ,  c o s ~ ~ s i n ~  ) ] ( s i n ~ c o s 0  t s inp ,  c o s ~ s i n e  I} 
0 0 0 - 

0 0 0 0 

= o  
54 

a 

= o  

= o  
55 

a 

a56 

a [ a e ( c o s n c o s e  -sinp, s i n a s i n 8  ) + ~ c o s p ,  C O S Q  
1 - - 

61 r -  2 0 0 
tl 1 - e  

+ Z s i n p , ] [ a e t - j T ( c o s a s i n e  t s i n p ,  s i n a c o s e  
0 0 

- 2  +Y cos p, cos e 

- sec 

t Z(s in  p, cos 0 cos e 

[X(cos a cos 0 

- sin Q sin e 13 
0 0 0 

e - sin p, sin fi sin e 2 
0 0 

a J 1  - e 
- - - Y cos p, sin e - z ( s i n Q  cos e + sin p. cos sin e 13 

0 0 0 

t (cos 52 cos e - sin p, sin 52 sin e ) 
k 

- '3/2 0 0 
a 

- 1 [ -ae cos p, sin e - x cos sz cos p, + Z sin cos p,] - - 
2 0 J1 - e 

62 a 

[ ae + Z(cos  sin e t sin p, sin 52 cos 0 + Y cos p, cos 0 
0 0 0 

- L  + Z(sin p, cos 

t sec 

cos c+ sin ~2 sin e ] 
0 0 

e 
[X(cos cz cos eo - sin p, sin ~2 sin 0 

2 
2 0 

a J 1  - e 
- - 

- Y cos p, sin 0 - Z(sin cos 0 + sin p, cos sin e )] 
0 0 0 

t cos p, sin 0 k 
- -3/2 0 a 
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- 
[ -ae(s inQ cos e t sin p cos Q sin e ) - x sin p 

1 
2 0 0 

a -  
63  - J 1  - e - - Y cos p sin a l I a e  t  cos 52 sin e cos e 

tT cos p cos e t Z(sin p cos Q cos eo - sin 51 sin e I] 

+ sec  

t sin p sin 
0 0 

- 2  
0 0 

e 

a J 1  - e  

- Y cos p sin e 

2[X(cos Q cos e - sin p s i n n  sin e 

t sin p cos Q sin e 13 

2 
0 0 

- - - Z(sin 52 cos e 
0 0 0 

k - .m t (sin h2 cos e t sin p cos 52 sin e ) 
0 0 a 

a = O  
64 

a = O  
65 

= o  a66 

As definedX1 = X, X2 = Y, X3 = Z ,  X4 = XI X5 = Y, x6 = Z 
and F10i F ~ D ,  .. ... F 6 0  a r e  Equations (4-27) ,  (4-28),  . .. . . (4-32)  
respectively, evaluated at the successive approxirm tions to the state 
variables. 
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APPENDIX B 

THE VARIATIONAL PROBLEM 

1. 0 INTRODUCTION 

The Euler- Lagrange equations for the variational docking problem, 
using minimum fuel consumption as the optimal cr i ter ia ,  a r e  developed in 
Section 2. 0. The terminal conditions for the docking problem a r e  defined 
in state variable notation in Section 3. 0. 
conditions a r e  given in Section 4. 0. 
existence of a minimum value a r e  discussed in Section 5. 0,  and the cornr 
position of extrema1 a r c s  a r e  explored in some detail in Section 6. 0 to de- 
termine the form of the desired solution with the conditions governing it. 

The Erdmann-Weirstrass corner 
The Weirs t rass  conditions for the 

2 . 0  EULER-LAGRANGE EQUATIONS 

Using the nomenclature and coordinate system adopted above, the 
orientation of the thrust  vector is defined by the following transformations : 

[)=[2 0 P - 

1 

0 C)-( 0 

30 

sin x 
P 

cos x 
P 

0 

0 

1 

0 

0 

cos x 

sin X 
Y 

Y 

0 

) (!:I 
-sin X 

0 

cos x 
r 

0 

Y 

cos x 



MY 
The thrust  

where x, y, z a re  unit vectors in the plumbline coordinate system and x 
y~~ zM a re  the unit vectors along the body axis of the chaser. 
vector of the vehicle is defined to be along the YM axis. 

The problem is restricted to subarcs flown at  and between maximum 
thrust  and minimum thrust (maximum throttling). 
is defined by 

The thrust  magnitude 

where Ve is the effective exhaust velocity and p is the propellant flow rate. 
To obtain the optimum thrust  vector program, the roll angle (X,) can be 
arbi t rar i ly  chosen a s  zero. 
x, y, z system become 

Then the components of the thrust  vector in the 

T = - ( s inX cos X ) p V 
X P Y e 

T. = (COS X COS X ) p v 
Y P Y e 

T = ( s i n X ) p V  
Z Y e 

(2-3) 

(2-4) 

The three velocity components along the x, y, z axes a re  defined a s  U4, u5, 
and U6 respectively, and the displacements a s  XI, X2, and X3. 
a central  force field model, the first  order set  of differential equations 
governing the motion becomes, 

Then for 

(2-6) 
e PV 

g2 = u 5  - - cos x cos x t m P 312 = 0 
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g4 = XI  - u4 = 0 

g5 = x2 - u5 = o  

g 6  = x 3 -  U6 = 0 

The vehicle's mass  and the constraint on the mass  flow a r e  given by: 

= m t f i  = 0 (2- 11) g7 

(2- 12) 
2 

g8 = (Bu - B ) ( P  - B,) - Y = 0 

where 

and p = the upper and lower l imits imposed on the allowable 
mass flow rate, respectively fill L 

Y = a real  variable introduced to satisfy the constraint 
equation. 

To minimize the fuel consumption, the integral 

I = l f i d t  (2- 13) 

must be minimized subject to the constraints given by equations (2-5) 
through (2- 12). 

To this end, the following function is defined: 

+ +  
G =  B 4 - g . X  

(2- 14) 



where 

+ 
g = the eight-dimensional vector defined by Equations (2-5) through 

(2- 12) 

A = the eight-dimensional vector to be defined by the Euler-Lagrange 
equation 

- = - (  aG d aG ) 
aq dt a4 (2-15) 

whe r e  

q = the variables U 1~ u2, U3, X l S  X2, X3, m, 8, X , X , and y. P Y  
Evaluating Equation (2- 15), the following se t  

x, = Aq . 
x 2  ,= A 5  

x j  = A 6  

of differential equations results: 

(2- 16) 

(2- 17) 

(2- 18) 

2 2 

x1 + x 2  2 + x 3  

(2- 19) 

3x 3x3x1 1 
- 2  2 2 - 2  x1 + x 2  2 +x3 Z J  x1 + x 2  + x 3  

L L 

2 

(2-20) 

3A lXlX2 3x 3x3x2 1 _ _ _  

x1 2 +x2  2 + x 3  2 - 2  x1 + x 2  - 2 -  +x3  2 1  

33 



2 'm 2 3  2[+ x1 2 + x 2  3x3 2 + x 3  2 ) 
2 

g O R E  

1 3X 2x2x3 
2 

3X lXlx3 
- 2  2 2 - 2  2 x1 + x 2  + x 3  x1 + x 2  + x 3  

(2-21) 

pVe five 

m 2 P Y 2 P Y 3 m 2  Y 
PVe x 7  z - ~ ~ - s i n X  C O S X  + X 2 - c o s X  C O S X  + X  - s i n X  
m 

(2-22) 

e V 
e V 

-sin X c o s  X - X - c o s  X c o s  X 
Y 2 m  P Y 

0 = X 1  
P 

(2-23) 

+ x 8 ( - 2 p  + p + p ) + 1 .0  + l 7  L 
e - X sin X 

V 

Y 

(2-24) Bve BVe 
0 = - X c o s  X c o s  X +-X sin X c o s  X m 1  P Y m 2  P Y 

pVe X c o s  X s i n  X - - X 3  cos X 
BVe PVe 

0 = - -X s i n  X s i n  X +- P Y m  Y m 1  P Y m  

8 0 = 2yX 

F r o m  Equations (2-24) and (2-25), t h e  thrust direction is g iven  by 

t anx  P = - x , / x ,  

t a n  X = 2 2 
J X ,  + X ,  

(2-25) 

(2c26) 

(2-24a) 

(2-25a) 



II 
I 
I 

Equations (2-12) and (2-26) express the familiar condition that for subarcs 
flown at either p = p o r  6 = pL,- X 8  = 0. 

U 

F o r  this case, Equation (2-23) reduces to 

e e V 
- s i n X  + X  + 1 . 0  = 0 

(2-23a) 

e V 
-cos x cos x - 

V 
- s i n X  cos X 

‘1 m P y - ‘ 2  m P y ‘3 m Y 7  

This equation when using Equations (2-24a) and (2-25a) can also be written 

- 1.0 
e 2 2 2 V 

m x 7  - - - X 1  + A 2  + A 3  (2-23b) 

Thus the necessary conditions for  an optimum solution are summarized 
by the following equations: 

.. v m  T .. - x = +x 
g R m 

where 

X = the three-dimensional vector with components X1, X2, and X3 

V = the effective exhaust velocity 
e 

m = instantaneous mass  

m = mass flow rate  

R 

F 

T [AX] = 1 cos Xp cos X 
Y 
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I 

V T 

m r = 2 ["I 
R 

The mass  flow rate is given by 

m + m  = o  F R 

-sin X cos X . 
P Y 

cos x cos x 
P Y 
sin X 

Y 

The Euler-Lagrange equations a r e  given by 
.r 

1 x'. = - 4 X  GM - 3 ( X  x + X 2 X 2  t X3X3)+ 
r 1 i 1 1  

where 

i = 1, 2, 3 
- s i n X  cos X P i, = - e F -  [ X I '  [cos x* cos 

Y sin X 

VI+ 
2 

m F  

The thrust  direction is given by 
A ,  u 

tan X = - 
l 2  

h 3  
2 2 tan X = 

Jx, + X 2  

The switching condition is given by 
c 

L 
where 

and 
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The boundary conditions are given a t  t = 0: 

(X7) f  = 1.0 

It is noted that, in this general formulation, it is assumed that in the 
optimum solution variable, thrust sub-arcs exist. If examination of addi- 
tional conditions indicates a restricted form of the optimum solution, the 
number of variables and equations will be reduced appropriately. 

3.0 DEVELOPMENT O F  BOUNDARY CONDITIONS 

The terminal conditions for the docking problem a r e  based upon the 
equations of Appendix A. 
where the subscript r r f r r  denotes the terminal value of a state variable. 

They are written here  in state variable notation, 

2 

= o  + gORE 
a 
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r 

(X ) (cos Q cos e t sin p sin S2 sin 8 ) t (X ) cos p sin 8 
95 = 1 I f  0 0 2 f  0 

l2 t (X ) (sin p cos SZ sin e 3 f  0 0 
- sin 52 cos 8 ) 

c 

(Xl)f(sin p sin S2 cos e - cos SZ sin e ) t (X ) c o s p  cos eo 
0 0 2 f  + 

+ (X ) (sin Q sin e + sin p cos 52 cos e ) (3- 5 )  3 f  0 0 

- 1  1 
2 

J 1  - e 
$6 = tan 

e 

a J 1  - e 
(X ) (sin p sin S2 cos e - cos S2 sin e ) t (X2)f cos p cos eo 2 I f  0 0 

I - L 
r R E  go 

3 f  0 0 1 a3 (tf - tP) = O + (X ) (sins2 s in  e t sin p cos a cos e ) - 

At the initial point, the conditions can be stated formally as: 

(3-7) 

(3-8) 

(3-9) 

(3- 10) 



I 
1 
8 
I 
I 
i 
8 
8 
I 
I 
I 
I 
I 
I 
t 
I 
8 
I 
1 

4J13 = (m), - 5 = 0 

where t is chosen for convenience as zero. 
0 

Based on the theory of calculus of variations, the following set of 
boundary conditions have to be satisfied at the end-points for the problem 
of Lagrange with variable end-points. 

(3- 14) 

(3-15) 

(3- 16) 

(3- 17) 

where the generalized variable qi represents the variables XI8 x28 x38 . . . . 8 

and g. the equations g l ,  g28 . . . . . 8  g8' 
constants to be determined from the above set of equations! and the parameter 
f is the-integrand of the integral to be minimized. 

The parameters E represent 
J 
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(3-19) 

Evaluation of Equation (3-16) yields 

(3-20) 

(cos cos 8 t sin p, sin Q sin eo) 
0 

40 



[ ( x ~ ) ~  (sin p, sin a cos e - cos sz sin e ) 2 0 0 
+ 

( 1 - e )  

+ (X ) cos p, cos e 2 f  0 3 f  0 0 
+ (X ) (sin 51 sin e + sin p, cos ~2 cos e )] 

(sin p, sin Q cos 8 - cos $2 sin e ) 
0 0 (2-24) 

6 - D(sin,  SinQcose -co&sine )-N(cosSZcose +sinp, sirdtsine ) 
J1-e 

2 2 

1 - e  

2 0 0 0 0 

+ 
D +- 

(sin p. sin 52 cos e 2 0 
- cos $2 sin eo)  = 0 'ge 

a41 - e 

where 

0 
N = (X ) (sinp sin 0 cos 0 - cos 52 sin 8 ) - (X2)f cos p, cos 8 I f  0 0 

+ (X3)f (sin p, cos S2 cos e + sin $2 sin 8 ) 
0 0 

0 D = ae + (X ) (cos 52 cos 8 + sin p. sin S2 sin 8 ) + (X ) cos p, sin 8 I f  0 0 2 f  

+ (X ) (sin p, cos sin e - sin 51 cos e o )  3 f  0 

(cos $2 cos e + sin p, sin a sin 

+ (X ) (sin p. cos C? sin 8 - sin 51 cos 8 ) 3 f  0 0 

) + (X ) cos p, sin 0 2 f  0 

0 

0 

2€, #- 

0 '2 
(1 -e  1 

(sinp sinn cos e - cos sz sin eo)  + (x21f cowp. COS e 
0 

+ 
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+ (X ) (sin G? sin eo + sin p, COS 52 cos 8 0 ) cos p, cos 0 0 3 f  

- D  COS p, COS 8 

2 

- N cos p, sin 8 € 6  
2 0 0 

J1  - e 
2 

2 N  

+ 
D +- 

1 - e  

(sin p, sin S2 cos 0 - cos S2 sin 8 ) = 0 b 

ad1 - e (3-25) 
2 0 0 

with the parameters D and N as  defined above. 

+ 26 5 (X I f  ) (cos G? cos e 0 t sin p, sin S2 sin e 0 ) + (X 2 f  ) cos p sin 8 0 

t (X ) (s inp c o s n s i n 8  - sinG?cose ) ( s i n k  cos52sin8 - sinS2cos8 0 ) 3 f  0 0 0 

+%[(x 2 I f  (sinp s inn  cos e 0 - c o s a  sin eo)  + (X2If cos p, cos e 0 

(1-e 1 

1 + ( X  ) (s inQsin8 +sinp, c o s G ? ~ ~ s e  0 )(sin52sinOo+sinp, cosS2cos8 0 ) 3 f  0 

6 

J1 -e  

E 
+ - D(sinp, cos52cose +sinSasine )-N(sinp cosS2sine 0 - sins2coseo) 2 0 0 

2 
2 N  

2 
D t  

1 - e  

(sin S2 sin e + sin p, cos C2 cos e ) = 0 (3-26) E 6e 

a41 - e 
2 0 0 
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(X = 0 (3-27) 

The s i x  Equations (3-21) through (3-26) specify the constants cl, c2, . . . . . , 
€6. Since these constants are now known, equations (3-21) through (3-26) 
do not furnish any additional information. To determine the boundary con- 
ditions for the 14 first order  differential equations (2-5) through (2-11) and 
(2-16) through (2-22), the boundary conditions can be most easily specified 
by equations (3-7) through (3-13), (3-1) through (3-6), (3-18), and (3-27). 
It is noted that a total of 15 boundary conditions a r e  required, since the final 
t ime (t ) i s  not specified. 

f 

4.0 CORNER CONDITIONS 
.r ... .. . It is,noted from Equations (2-5) through (2-12) that U4, Us, u6, Xy, 

and fi do not appear in the differential equations. Thus c4 ,  c5, u6, 
Xp, and fi a r e  required to be only piecewise continuous in the interval 

tf ;  i. e . ,  the extrema1 arc  may have corners.  At such corners ,  the 

xP' 
xY' 
to < t 
Erxm&n-Weiers t rass  corner conditions must be satisfied. 
considered, this implies that at such corners  

F o r  the problem 

X .(+) = X .(-); j = 1, 2, .. .. . , 7 
J J 

(4-1) 

Equation (4-1) is a statement of that fact that the multipliers Xi, X2, 
. . . . . , X 7 must remain continuous over the interval to < t < t - - f' 

5.0 WEIERSTRASS CONDITIONS 

To explore the nature of the optimum solution in some more detail, 
one of the necessary conditions for the existance of a minimum value of 

t f 

I = Bdt, 

t 
0 

is now considered. 
the function 

This is the Weierstrass condition, which requires that 

11 

i=l 
1 
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where G is defined by 

satisfy the inequality 

(5-3) 

The functions qi* denote functions qi subjected to finite admissable variations. 
It is evident that functions whose derivatives appear in Equations (2-5) through 
(2-12) cannot be subjected to variations. This implies that 

u *=u4,  u5*=u u6*=u6, x l * = X  X 2 * = x  X * = X 3 ,  and M*=m. 
4 5’ 1’ 2’ 3 

Evaluating inequality (5 - 3) yields 

where 

e V 
r = - ( - X 1 c o s X  s i n X  t X 2 c o s X  C O S X  t X  s i n X ) - ( 1 f X 7 )  

m Y P P Y 3  Y 

(5- 5) 

e V 
m=-(-A c o s x  *s inX * + X  C O S X  *cosX * t X  s i n x  * ) - ( 1 t A  ) 

m 1 Y P 2  P Y 3  Y 7 
(5-6) 

Since inequality (5-4) must hold for all admissable variations, we consider 
first 

P = f3* 

x # X * , X  # X *  
Y Y P Y 

Inequality (5 - 4) be c ome s 

(5- 7) 
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x = X * , X  = x *  
Y Y P P 

Inequality (5-9) becomes 

In equality (5-8) consider 

U 
8 = B  

Then 

( 5 - 9 )  

, inequality (5-8) becomes 8, For  /3 = 

(8, - B * r >  0 (5-10) 

Considering the results to be drawn from the Weierstrass condition, note 
first that the thrust  vector orientation should be chosen such that for all 
admissable variations in X and X , the function 

P Y 

-1 cos X sin X t X cos X cos X + A 3  s i n X  
1 Y P 2  P Y Y 

i s  maximized at all t imes (inequality ( 5 - 7 ) ) .  

Since by Equation (2-12) 

B* ’ B, 
(5- 11) 

U 
8* < B 
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It follows from Equations (5-9) and (5-10) that 

(5- 12) 

F rom Equation (2-23) also note that 

r = x 8 ( - 2 p  t . B  + p U L  
(5- 13) 

Applying conditions (5-12) to Equation (5- 13), the following conditions a r e  
obtained: 

(5-14) 

Since by definition pu > PL, inequalities (5-14) imply that for the two cases  
of /3 considered 

',SO (5- 15) 

By application of the Weierstrass condition, inequality (5-15) can be shown 
to hold for all values of p. 

6.0 NATURE OF OPTIMAL ARCS 

The composition of the extrema1 a r c s  will be explored in some detail 
to determine the form of the desired solution with the conditions governing it. 

F rom Equation (2-26) the following must hold 

'8 = 0, y f o ; P L < P < B  U 

or 

P, = 0, y = 0 ; p  = P L 4  = 
'8 
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1 
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1 
1 
1 
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Considered first is the existence of a solution when X 8 = 0. When X 8 = 0, 
Equation (2-23a) applies; i. e., r = 0. 
.1[, must equal zero. 

F o r  r to remain equal to zero 

Differentiation of r yields 

This can also be written 

e . v  
= - ( - X 4  sin X cos X + X cos X cos Xy t X 6  sin X ) (6-2) 

m P Y 5  P Y 

If f is zero from Equation (6-1) o r  (6-2), 

-1 s i n X  + X cos X + X tan X = 0 
4 P 5  P 6  Y 

o r  

'4'1 '5'2 
2 2 +  2 2 +  2 2 JX, + X 2  JX, + A 2  $ A l  + A 2  

= o  

In general, this would be satisfied i f  

X 4 = X 5 = X 6 = O f o r X l #  0, X 2 #  0, X j #  0 

Referring to Equations (2-16), (2-17), and (2-18), this implies that 

X I  = const. 

X 2  = const. 

X g  = const. 

But if X 4  = X 5  = x 6 = 0 ,  it follows that X 4 = X 5 = 1 6  = 0. 
(2-19), (2-20), and (2-21), this implies that X 1 = X 2  = 1 3  = 0. 
these conditions, no solution exists. Thus, in the optimum solution only 
subarcs of minimum or  maximum thrust  can a r i se ;  i. e . ,  

Using Equations 
But under 
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P = P p  

fj 5 8, only. 

As was shown by application of the Weiers t rass  condition 

0 whenp = PL 

- 0 when P = P U S  

> 

then since no intermediate thrust  levels can exist, the switching from 

must occur when 

r =  o (6-3) 

From Equations (2-24a) and (2-25a), the optimum thrust  direction is  given 
by 

tan X P = - X , / X  2 

k g  

J X ,  t X 2  
2 2 tan X = 

The Edmann-Weierstrass corner condition insures  that the multipliers 
x 1s x 2, . . . . . , x 8 remain continuous at all t imes in the interval to 5 t - tf. 
This implies that tan X 

< 
and tan X 

P Y remain continuous throughout the solution. 

However, Equations (604) and (6-5) admit jumps in X and X of magni- 
P .Y tude IT. 

Weiers t rass  condition which requires that the expression 
This ambiguity is resolved by one of the resul ts  of applying the 

-1 cos X s i n x  t X  cos X cos X t X sin X 
1 Y P 2  P Y Y 

be maximized at  a l l  times. 

I 
I 
I 
1 
I 
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This then determines the principal values of X 

Thus it is  shown that only subarcs flown at either minimum or maxi- 

and X uniquely. 
P Y 

mum thrust exist for the optimum solution. 
determines which value of ( f l  = 

The sign of the parameter 
or ( f l  = fi  ) applies. %) U 
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APPENDIX C 

SIMPLIFIED FOR MULATION FOR FEASIBILITY DE TERMINATION 

1.0 INTRODUCTION 

The feasibility of the complete three dimensional formulation (dis- 
cussed in Appendices A and B) was checked by simplifying the formulation, 
implementing the equations on a digital computer, and computing trial 
solutions. The simplified formulation is defined in Section 2 .0 ,  and a 
two impulse (idealized) solution is given in Section 3 . 0  to allow initial guesses 
for the Lagrange multipliers. 
transformations which ease computational difficulties. 

Section 4 .0  and 5.0 give some coordinate 

2 .0  SIMPLIFIED MODEL 

2 .1  GENERAL 

A two-dimensional model derived from the three-dimensional model 
defined above, is described in this section. 
used as a basis for a computer study to obtain optimum trajectories.  

It is this model which was 

The target is assumed to be in a circular orbit, and the chaser is in 
a coplanar orbit, nearly a t  the same altitude and trailing by a small  central  
angle. 
fixed time to rendezvous. 
Figure C-1. 
tance of the chaser is rL. 
commencement of rendezvous (launch) is 0,. 
chaser vehicle trajectory is +. 

It is desired to obtain a fuel optimum rendezvous trajectory for a 
The geometry of this trajectory is shown in 

The radial distance of the target is rT;  the initial radial dis- 
The central  angle between chaser and target at 

The anglar distance of the 

In order to obtain the necessary fuel optimum trajectories,  initial 
conditions must be found for the Euler Lagrange equations given below 
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Figure C- 1 Two-Dimensional Rendezvous Geometry 
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2.2 TWO-DIMENSIONAL CHASER EQUATIONS O F  MOTION 

These equations a r e  derived from Appendix B, Equation (2-5) through 
(2-10): 

X I  - u4 = 0 

x2 - u5 = 0 

h t p = o  (2-5) 

2.3 EULER LAGRANGE EQUATIONS 

These equations a r e  derived from Appendix B, Equation (2-16) 
through (2-26): 
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X 1  = - X 3  

X 2  = - X 4  (2-7) 
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(2-9) 
3 xp 

x1 + x 

(2- 10) 
P 2  P m 

tanX = - A1 / h 2  
P 

(2- 11) 

V 
(2-12) 1 - k g  r =  c- P 2  P 

h sin X + A cos X 

= 8, when r > 0 (2- 13) 

b = 8, when I? < 0 

3 . 0  TWO IMPULSE SOLUTION 

Since, for large thrust engines, the optimum trajectory will be close 
to a two-impuls.e t ransfer ,  the two impulse transfer case is now solved in 
order to obtain initial guesses for the Lagrange multipliers. 

The polar equation of a transfer orbit is, in general, given by 

P r =  l+e cosv  

where 

r is the radial distance 

p is the latus rectum 

e is the eccentricity, and 

v is the t rue anomoly. 

(3-  1) 
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At launch r = rL and the corresponding t rue  anomoly is vL. 
central angle subtended between launch and rendezvous, then at rendezvous, 
r = r T  and v = vL t $. 
launch and rendezvous conditions into Equation (3- 1) and eliminating p 
yields: 

If $ is the 

This is shown in F igure  C-2. Hence, substituting 

r - r  L T  
e =  

L r cos (v t +) -rL cos v T L 
(3 -2) 

T' where rL = 

The constant angular 
k is defined in  Appendix B. 

rate of the target is given by ix where 
Since the target moves through an  angle $-+ 

0' 
the time to rendezvous 1s given by 

(3-3) 

In general, the time of flight between two angular positions v1 and v2 
i n  an eliptical orbit is given by 

e s inv  t- 1 tan -1 "sin.] e tcos  v v2  (3 -4) 
F e  

l t e  c o s v  
P t =  

k 1 / 2  

1 V 

Substituting v ,  
v = vL t $ and 

= VL, v2 = vL t 9, t = T ,  and eliminating p by substituting 
r = r T  into Equation (3-1), yields, from Equation (3-4): 

1 vLt+ -1 f l s i n v  
e tcos  v 

t 
[ l t e  cos (vL t  +) 

e s i n v  

l t e  c o s v  we2 tan 
+ - q o  = 2 3 312 [- 

( 1 - e  1 

L V 

where e is defined by Equation (3-2) .  
for  VL, which then yields a value for  e from Equation (3-2) and p f rom 
Equation (3-1). Thus, the transfer orbit is determined. 

Equation (3-5) can now be solved 



Y 

/VLAUNCH 

'L ' rT 
Figure C-2 Geometry of Rendezvous Trajectory, 
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The solution fails if r L  = r T  since r T  COS (vL t +) = r cos vL. For  L 
this case,  vL = - +/2  (or TT - +/2).  This is demonstrated in Figure C-3.  

Substituting v2 = +/2, v1 = -4~12, and t t T into Equation (3-4) ,  and 
allowing p / r T  = l t e  cos + / 2  yields: 

1 2 
- 1  fi s in+/2)  

tan 
1 

1 -e 
- -  e s in+ /2  

+ - c o  = 2 l t e  cos+ /2  2 e t cos  +/2 
2(1te cos +/2) 

1 -e 

(3-6)  

Equation (3-6)  can be solved for e. 
is again determined. 

This determines p, and thus the orbit 

The magnitude and direction of the impulsive velocity increments a t  
launch and rendezvous can now be evaluated. 
initial velocity vector, 
VL and y L  the velocity magnitude and direction after the first impulse, 
then the magnitude and direction of the first impulses given by, from 
Figure C-4 .  

If V is the magnitude of the 0 i t s  direction with respect to the local horizontal, 
YO 

(3-  7 )  
YO) 1 1 / 2  

AVL = [ V t  t 3 0 - 2V 0 VL cos (yL - 

0 
V sin y -V cos y -1 L L O  p ,  = tan 

L 

V C O S  y - V  s i n y  0 L O  L 

where 
L e sin v 

l+e cos v 
-1 yL = tan 

L 

( 3 - 8 )  

V 2 = 2 k [ A  - 1 

L L r 
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rL = rT Figure C-3 Geometry of Rendezvous Trajectory, 
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Figure C-4 Geometry of Velocity Increments 
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The magnitude and direction of the final impulse a r e  defined by the 
following equations (see Figure C-4): 

2 2  
R R T  

v + v T -  2v v cos yR A V R =  [ 

-1 - [vT sin 9-v R sin (+ -yRj  

v cos 4-v cos (qJ-y,) 
8, = tan 

T R 

where 
e sin (v t +) 

l t e  cos (vL + +) 
-1 L 'R = tan 

2 J  vi= 2k [* - '  2p(l-e ) 
1 

(3-10) 

If i t  is assumed that the burning rate  is constant, and that the thrust 
is constant, then the firing times can be approximated by 

(3-11) 
m 

- -  e l  1- exp (-AVR rh/T)] 
m 

tR - 

where 

tL is the launch firing time 

tR is rendezvous firing time, 
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m is the initial chaser mass ,  and 0 

L' m = m  - m t  
1 0 

Also, the f ind m a s s  ratio is given by 

I - m 
m = exp [-(Av, t AV,) & / T  
0 

(3-  12) 

A computer program was written to evaluate the various relevant 

The results shown in Figure C-5 demonstrate that the value o 
quantities for a particular set of initial conditions: V L ,  yL, rL, "p',;;,", 
a very wide range has very little effect on AV. 
demonstrates the small  effect of Jr on mass  ratio. Conversely, very small 
variations in the magnitude and direction of the velocity increments have 
very large effects onthe rendezvous point. 
values of the Lagrange multipliers a r e  similarly sensitive in the calculus 
of variations model. 

T* 
Similarly, Figure C-6 

This implies that the initial 

This has been vekified by computer runs. 

4 . 0  COMPUTER CALCULUS O F  VARIATIONS MODEL 

The equations of Section 2 were t ransformed to polar form and a r e  
given below. The geometry is shown in Figure C-7. 

;'e t 2;; = - T / m  sin ( 6  - q) 

.. - 2  T 2 r - r 8 = m cos (6  - q)- k / r  

h ; ' t Z k q = -  3 k h  sin 2(e - q) 
2 r  3 

.. 
A - A T  =-  3 3 ,  

- -  L A  A 5 -  ,2 

V 
r = -  " i  

m 

(4- 1) 



x 
u ...I 

V 
0 
rl 

$ 
rn 

I u 
Q 
k 
1 
bo 
ik 
.rl 

61 



( W W u )  - ' O l l V t l  ssvw 

62 



Y 

CHASER VEHICLE 
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X 

Figure C-7 Rendezvous Geometry in Polar Form 
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These quantities are related to those in Section 2 follows: 

A 1  = A COS '1 

A 2  = A sin q 

X1 = r cos 0 

X2 = r sin 0 

The relationship between r a n d  A is given by 
5 

e 
V 

m r =  - A - A 5  -1  

5' s o  that an initial value of r i s  equivalent to an initial value of A 

(4 - 2) 

The investigation of the effects of the initial conditions we.re ca r r i ed  
out in the following manner. and 0 a r e  given. 
Since Equations (4-1) a r e  homogeneous in A ,  the initial value of A is imma- 
terial  to the trajectory. In order to approximate the two impulse case,  a 
good guess of tee initial va;lue of '1 i s  the value of pL determined in Equa- 
tion ( 3 - 7 ) ,  and A = 0, '1 = 0 initially. 
meters ,  Equations (4- 1) a r e  integrated numerically, assuming that the 
thrust engine is on initially, i .e. ,  T = 0. 

Initial conditions on r ,  0, G, 

To observe the effects of these para-  

At each instant of time, the transfer orbit that would result  i f  thrust  
were terminated at that instant is computed. Thus, instantaneous transfer 
orbits a r e  generated. These transfer orbits a r e  shown in  Figure C-8. 

At time t, the values of r ,  r ,  0, and 0 known from the integration 
of Equations (4-1). Then the semi-major axis, semi-latus rectum, and 
t rue anomaly of the instantaneous tranfer orbit are found from the follow- 
ing equations: 



-I . 
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r 
a =  7 (4-3) 

2 - r V L / k  

P - r  
r e cos v = 

r 2 E  6 (4-5) 

k e sin v = 

This transfer orbit intersects the target when r = rT. Let $ be the 
central  angle subtended between the position at time t and the point where 
the instantaneous orbit c rosses  the target orbit. This angle is given by 

P 

T 
e cos (V t p )  = - -1 r 

(4-6) 

2 2  2 
e sin (v t $ )  = sign (r - r )  e - e cos (v t $ )  T 

To relate this to time of flight, the eccentric anomaly of the instan- 
taneous orbit is computed as follows: 

2 
(e t e cos v) r 

COS E = 
e P  

(4-7) 
r e Y 2  I -e  sin v sin E = 

e P  

When the orbit intersects the target orbit: 

[e2 t e cos (v +,J cos E, = 
e P  1 

r e  T {?sin (v t $ 1  
sin E = 

T e P  

(4-8) 



Therefore, from Kepler 's equation, the time interval corresponding 
to the orbit from E to ET is given by: 

(4-9) T 
At = 

The angular position of the target when the instantaneous orbit inter-  
sec ts  the target orbit is given by: 

= $o + ( t  - At) eT 

The angular position of the chaser a t  this t ime is: 

= e t #  eR 

Thrs the angular e r r o r  is given by: 

(4- 10) 

(4- 11) 

(4- 12) - 'R LM= eT 

These quantities a r e  computed at each time t as the differential 
equations a r e  integrated. 
A 0  = 0. 

Intercept occurs i f  thrust  is terminated when 
If r i s  initially set  equal to zero, then letting 

t 

0 

will cause the thrust  to terminate a t  this instant. 
corresponding values of I? are obtained for intercept. 

By varying X o ,  qo, qo, 

0 

5.0 INTERCEPT CONDITIONS 

In order to evaluate the effects of small  variations in the initial con- 
ditions on intercept, the equations of motion were integrated in relative 
coordinates to eliminate the numerical difficulties inherent in dealing with 
orbits that a r e  close together. Therefore, the following equations were 
used. First define 
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where 

XIT  = r  T c o s d ~ t t 3  

Then the differential equations of motion of Section 2. 0 become: 

k 

T 

cos '1 t - (X1 f - f i )  T '  
m 

.. 
3 

6 = -  
r 

where 

5.7 2 5.7.9 3 q +...) q -7 2 1 9 5 7 -  
5 f = 3 q ( 1  - -  

(5-3) 

q =  - 1 r ( X l T + 2  1 f i ) f i + ( X 2 T + 2  1 5);( 2 
I 

T '  = - when I'C 0 
(5 -4) 

T '  = T when I' - > 0 
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and X anL q a r e  hefine( in Equations (4-1). 

These equations were integrated using initial values obtained by the 
The methods described in Section 4.0, and small  variations were made. 

trajectories were run until target-chaser distance 

went through a minimum. 
sensitive to initial conditions on the Lagrange multipliers. 
hand, small  variations cause very small  variations in firing time, and hence 
have a negligible effect on fuel consumption. 

As was expected, this miss  distance was extremely 
On the other 
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